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Abstract. An explicit expression is found for the coupling function of Wannier excitons inter-
acting with both longitudinal and transverse acoustic phonons in anisotropic nonpolar crystals. As
an application, the damping of excitons due to the scattering by longitudinal acoustic phonons is
calculated.

1. Introduction

The study of the exciton–phonon coupling in anisotropic semiconductors is of great interest,
since it constitutes a direct probe of a fundamental interaction in condensed matter physics [1].
In crystals with symmetry lower than cubic, the multiplicity of the degeneracy is lowered and
additional possibilities for the exciton motion arise [2]. It seems that a number of effects are
directly connected with these possibilities. It was shown by Engelbrecht and Helbig [3] that
the crystal anisotropy of 6H-SiC is the cause of the new line in the reflectivity spectrum. An
energy splitting of about 2 meV between the 2P0 and 2P±1 exciton states of the A series in
AgI due to the anisotropy of this crystal was observed by Dingeset al [2]. Numerous other
interesting effects had been investigated in earlier publications (see, e.g., [4–8]).

In many applications of exciton–phonon interaction in crystals, the coupling function is
used in its simplest form, which is suited only to making qualitative estimates. To study
many of the optical characteristics such as the structure of the light absorption bands and its
dependence on temperature, and to calculate the exciton lifetime, mean free path etc, it is
necessary to know the explicit form of the coupling function [9]. Some details of this problem
were reviewed in [10, 11].

A general expression for the exciton–phonon coupling function of the isotropic nonpolar
crystal was derived by Ansel’m and Firsov [12] as well as by Toyozawa [13]. This problem
for anisotropic systems was considered in more depth by Fock, Kramer and Büttner [14] and
by the present author [15] for polar crystals in the case of the excitons interacting with optical
phonons.

In the present paper we will obtain an explicit expression for the coupling function of
Wannier excitons interacting with acoustic phonons, taking into consideration the anisotropy
in the effective mass, the deformation potential constants, the exciton radius and the velocity
of sound in the crystal.
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Section 2 is devoted to the obtaining of the basic formulae for the exciton–phonon coupling
in nonpolar anisotropic materials. In section 3 we apply these formulae for the calculation of
the exciton damping on acoustic phonons in anisotropic uniaxial crystals.

2. Basic formulae

The interaction of an exciton with vibrations of the anisotropic nonpolar lattice will be treated
as an independent interaction of an electron and a hole with longitudinal and transverse acoustic
phonons. We shall apply the deformation potential method [16] to write down the energy of
the interaction of excitons with acoustic vibrations. The fundamental idea of the deformation
potential approach introduced by Shockley and Bardeen [17] is based on the possibility of
calculating the scattering of electrons by lattice waves by taking as the interaction potential,
V (r), the shift in the energy bandE1(r) resulting from dilation. The justification for this
assumption can be easily generalized for anisotropic nonpolar crystals to include the scattering
of excitons by longitudinal as well as transverse acoustic modes. When the dilation of the band-
edge points is expressed with the help of the field of displacementU(r), the Hamiltonian of
the exciton–phonon interaction becomes

Ĥ (re, rh) = −SpCνµe ενµ(re) + SpCνµh ενµ(rh) (1)

whereCνµj is the tensor of the deformation potential for an electron (j = e) or for a hole
(j = h); ενµ refers to the tensor function of the mechanical strain. In the above, repeated
indices are to be summed over. The symbol Sp means that the summation is carried out over
the diagonal elements of the matrix product.

Generally speaking, in an anisotropic medium the velocity of the wave spreading
depends on the direction. The formal decompositions of vibrations in both the transverse
and longitudinal directions are conditional to some extent, because the polarization vector
componentseλ(q) (λ refers to the lattice branches,=1, 2, 3) in anisotropic media are not
exactly directed along or perpendicular to the wave vectorq. For an arbitraryq-point one
would expect the polarization vectore of the acoustic lattice branchesλ to involve longitudinal
as well as transverse modes. In anisotropic media the number of elastic constants for the energy
density grows with the anisotropy increase, i.e. with the symmetry reduction. This can make
the theoretical calculations for an arbitrary anisotropy very complicated. For the sake of
simplicity, we will consider only that symmetry for which two of the acoustic branches are
still roughly degenerate in one plane, which we suppose is perpendicular to the main optical
axis of the uniaxial crystal. That is, we will confine ourselves to the kind of symmetry which
in the group theory representation can be described in terms of the one-parameter compact
group of two-dimensional rotations O+(2). This group can be treated as the limit case of the
point group Cn with n → ∞. Hence, the symmetry which we wish to consider here will be
described by the point group C∞, and is known as the cylindrical symmetry. For the case in
which the cylindrical and the crystal axes coincide, one can always choose those directions in
the(x, y) plane for whichC andε from equation (1) may be expressed as

Cj =
C⊥j 0 0

0 C⊥j 0

0 0 C
‖
j

 ε =
(
ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

)
. (2)

Instead of the deformation potential componentsC⊥, C‖, the components

4d = C⊥ and 4u = C‖ − C⊥
have often been used.
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The strain tensor components for the case of a low degree of deformation are given by

ε⊥(ρj , zj ) =
∂U⊥(ρj , zj )

∂ρ
ε‖(ρj , zj ) =

∂U‖(ρj , zj )
∂z

(3)

where{ρj , zj } are the cylindrical coordinates of the chargej with the cylindrical axis alongz,
andU⊥,U‖ are the perpendicular and parallel components of the vector field of displacement,
which in the quantum representation may be expanded as follows:

U(ρj , zj ) =
√

h̄

2ρV

∑
q⊥,q‖

1

(q2
⊥ + q2

‖ )1/4
ei(q⊥·ρj+q‖zj )

(
eq⊥√
S⊥

+
eq‖√
S‖

)
(b̂q‖q⊥ + b̂+

−q‖,−q⊥) (4)

whereeq⊥ andeq‖ are the unit vectors of displacement perpendicular and parallel to the crystal
axis directions,S⊥ andS‖ refer to the transverse and longitudinal velocities of sound in the
crystal, respectively,ρ is the density of the material,V is the volume of the crystal,b+

q⊥q‖ (bq⊥q‖)

is the creation (annihilation) operator for a phonon with quasi-momentum components{q⊥,
q‖ = q}. As usual, the product of the unit vectors is governed by the Kronecker symbol.
Above, we suppose as well that the frequency dependence of an acoustic phonon of theλth
branch on the wave vector may be represented as

ωλ(q) = Sλ(κ)|q| κ = q

|q| . (5)

To define the operator of the exciton–acoustic-phonon interaction for a uniaxial crystal, it is
convenient to introduce the centre-of-mass (R) and relative (ρ) coordinates in the system with
cylindrical symmetry, as was done in [15]. Then, using equations (3)–(5), the Hamiltonian (1)
for the deformation potential can be rewritten in the form

Ĥac(R,ρ) = −i

√
h̄

2ρV

∑
q⊥q‖

1

(q2
⊥ + q2

‖ )1/4
ei(q⊥·R⊥+q‖·R‖)

[
eiq⊥·ρ⊥m⊥h /M⊥+iq‖·ρ‖m

‖
h/M

‖
we(q⊥, q‖)

− e−iq⊥·ρ⊥m⊥e /M⊥−iq‖·ρ‖m
‖
e/M

‖
wh(q⊥, q‖)

]
(b̂q‖q⊥ + b̂+

−q‖,−q⊥). (6)

Here

wj(q⊥, q‖) =
C⊥j√
S⊥
(eq⊥ · q⊥) +

C
‖
j√
S‖
(eq‖ · q‖) j = e, h. (7)

mie andmih refer to theith components of the electron and hole mass, respectively, and
Mi = mie +mih, i = ‖,⊥. We should expect scattering of excitons to occur due to longitudinal
and transverse waves. Therefore, it is necessary to write down the producteqi · qi accurately
for purely longitudinal (i = ‖) and purely transverse (i = ⊥) modes. It should be noted here
that if the sum of the moduli of the terms in parentheses in equation (7) for the transverse-
component mode is negative, then it is necessary to change the signs of the components ofq⊥
andq‖ to the opposite ones.

Equation (6) is a quite general expression for the deformation potential coupling.
We choose the wave function of the Wannier exciton corresponding to the hydrogen-like

model for uniaxial crystal by analogy with the one used in [12, 18], in the form

|k⊥,k‖〉 = 1√
πa2

exbex

e
−
√
ρ2
⊥/a2

ex+ρ
2
‖/b2

ex 1√
V

ei(k⊥·R⊥+k‖·R‖) (8)

whereaex andk⊥ are the exciton Bohr radius and the exciton quasi-momentum in the plane
(x, y), respectively, andbex andk‖ refer to the same parameters for thez-direction.



420 N I Grigorchuk

Now, using this function, we can average Hamiltonian (6) over the exciton variables.
The matrix element calculation in this case is similar to one done for exciton coupling with
LO phonons [15]. Taking into account only the linear terms in the operator upon exciton–
phonon variables, the operator of the exciton–phonon interaction in the second-quantization
representation is

V̂ex−( L
T )−ph = −i

(2π)3

V

∑
q⊥,q‖
k⊥,k‖

8(
L
T )
(q⊥, q‖)â+

k⊥k‖ âk⊥+q⊥,k‖+q‖(b̂q⊥q‖ + b̂+
−q⊥,−q‖) (9)

wherea+
k⊥k‖ (ak⊥k‖) is the creation (annihilation) operator of the exciton with quasi-momentum

componentsk⊥, k‖, and

8L(q⊥, q‖) =
√

h̄

2ρV

1

(q2
⊥ + q2

‖ )3/4

×
{
q2
⊥C
⊥
e /
√
S⊥ + q2

‖C
‖
e/
√
S‖

Z2
e(q⊥, q‖)

− q
2
⊥C
⊥
h /
√
S⊥ + q2

‖C
‖
h/
√
S‖

Z2
h(q⊥, q‖)

}
(10)

for exciton coupling with longitudinal acoustic vibrations and

8T(q⊥, q‖) =
√

h̄

2ρV

q⊥q‖
(q2
⊥ + q2

‖ )3/4

{
C⊥e /
√
S⊥ − C‖e/

√
S‖

Z2
e(q⊥, q‖)

− C
⊥
h /
√
S⊥ − C‖h/

√
S‖

Z2
h(q⊥, q‖)

}
(11)

for exciton coupling with transverse acoustic vibrations. In equations (10), (11) the explicit
form of the functionZ is as follows:

Z( e
h )
(q⊥, q‖) = 1 +

(
aex

2
q⊥
m⊥
(

e
h )

M⊥

)2

+

(
bex

2
q‖
m⊥
(

e
h )

M‖

)2

. (12)

The exciton–phonon interaction operator (9) describes the elastic and inelastic scattering
of excitons with the emission or absorption of phonons in uniaxial crystals. The number of
excitons, like that in isotropic crystals [9], remains unchanged, while the number of phonons
changes. The function8L,T(q⊥, q‖) represents in an explicit form the exciton–phonon coupling
function for excitons interacting with longitudinal (L) and transverse (T) acoustic phonons in
uniaxial nonpolar crystals. These functions tends to zero withq⊥, q‖ → 0, simultaneously,
and have maxima at small values of bothq‖ andq⊥. The functions8L and8T do not depend
on the quasi-momenta of excitons or on the exciton bandwidth. In the absence of anisotropy
of the crystal (m⊥j = m

‖
j , C

⊥
j = C

‖
j , S⊥ = S‖ andaex = bex), the coupling function (10)

coincides with the one found in [9, 12, 13] for isotropic crystals. There may be a discrepancy
of a factor of 2/3, because in these papers the deformation potential constant is chosen to be
(2/3)C rather thanC. For the case of coupling with transverse vibrations, this function, as is
seen from (11), is equal to zero.

The formulae for the coupling functions8 derived above can be applied in quantum field
theory, especially in solving the topical optical problems dealing with the exciton–phonon
coupling in anisotropic and low-dimensional systems. For instance, the lineshape of light
absorptionL(ω) and the tensor components of the dielectric permeabilitiesε‖,⊥ of materials
may be calculated using these formulae.

3. Exciton damping

As an application of the theory developed above, let us consider the damping in the uniaxial
crystal due to exciton scattering by acoustic vibrations.
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An external photon entering a crystal can transform directly into an exciton provided that
they have the same energy and wavenumber. But this does not constitute absorption, unless
this exciton is scattered by a phonon or some other defect in the crystal [19]. The exciton
can be scattered by acoustic phonons via the deformation potential or via the piezoelectric
potential [20]. Both scattering processes give significant contributions, predominantly for low
temperatures. We restrict our consideration to just the first one.

On the other hand, the kind of scattering that we wish to consider here is essentially
the scattering of an exciton by emission or absorption of a longitudinal acoustic phonon.
The transverse acoustic phonons can be neglected, because shear waves yield a very small
deformation potential [13, 21]. The longitudinal acoustic mode plays an important role for
intraband scattering [22–25] and gives a contribution comparable to that of the optical mode
to the interband scattering [13].

The damping parameter0 has been introduced by several authors to explain experimental
results obtained for the frequency range from that of Raman [22] or Brillouin scattering [23]
to that of transmission experiments [24, 25]. We will also calculate this parameter here. The
calculations can be performed using the Fermi golden rule. Taking into consideration the
coupling function (10) obtained above in the one-phonon approximation for uniaxial crystals,
one finds

0±(ω, T ) = V

2πh̄

∫ π/c

−π/c
dq‖

∫ π/a

0
q⊥ dq⊥82

LA (q‖, q⊥)

×
[
n̄±LA (q‖, q⊥) +

1

2
± 1

2

]
δ[h̄ω − Eq‖,q⊥ ∓�q‖,q⊥ ] (13)

where the plus and minus signs correspond to the phonon emission and absorption processes,
respectively,c anda are the lattice constants along and transverse to the optical axes of the
crystal, respectively,

n̄LA (q‖, q⊥) =
[
exp

(
1

kBT
�(q‖, q⊥)

)
− 1

]−1

is the phonon partition function, which obeys Bose statistics, andT is the temperature of the
crystal. The dependence of the exciton energiesEq‖,q⊥ on the quasi-momentum will be taken
in the form

Eq‖,q⊥ = E0 +
h̄2q2
‖

2M‖
+
h̄2q2
⊥

2M⊥
(14)

whereE0 is the energy of the exciton band bottom, and we will adopt the following form for
the acoustic phonon dispersion:

�q‖,q⊥ = h̄
√
S2
‖q

2
‖ + S2

⊥q
2
⊥. (15)

Substituting equations (14), (15) into equation (13), we carry out integration over the variable
dq⊥ first. This is easily done usingδ-function. One can see that0± will differ from zero only
for

q2
(∓) =

(
M⊥S⊥
h̄

)2[
2 +

2(h̄ω − E0)

M⊥S2
⊥
− M⊥
M‖

(
h̄

M⊥S⊥

)2

q2
‖

∓ 2

√
1 +

2(h̄ω − E0)

M⊥S2
⊥

+

(
h̄

M⊥S⊥

)2( S2
‖
S2
⊥
− M⊥
M‖

)
q2
‖

]
. (16)
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Thus,

0±(ω, T ) = 2M⊥V
πh̄3

∫ b∓

a∓
dq‖

∣∣∣∣dϕ(q‖, q⊥)dq2
⊥

∣∣∣∣−1

q2
⊥=q2

(∓)

82
LA (q‖, q⊥)

[
n̄±LA (q‖, q⊥) +

1

2
± 1

2

]
(17)

whereϕ(q‖, q⊥) is the argument of theδ-function divided by the factor ¯h2/2M⊥. The limits
a∓, b∓ may be determined from the condition that 06 q2

∓ 6 (π/a)2. Then, one finds

a∓ = 0 b∓ = M‖S‖
h̄

(
∓1 +

√
1 +

2

M‖S2
‖
(h̄ω − E0)

)
. (18)

The condition of reality of the expressions under the square-root signs in equations (16) and
(18) give us, respectively, the new conditions

h̄ω − E0 6 −M⊥S
2
⊥

2
h̄ω − E0 6 −

M‖S2
‖

2
. (19)

These inequalities are valid for the processes with phonon emission, but for the processes with
phonon absorption only the condition ¯hω 6 E0 has to be satisfied.

Performing the integration in equation (17) over dq‖, one can obtain an explicit expression
for 0±(ω, T ), which, however, is somewhat cumbersome. We shall here write down just the
result that one obtains for small values of the difference|S2

‖/S
2
⊥ −M⊥/M‖| < 1.

Let us introduce the anisotropy parameters

α = 1− M‖
M⊥

β = 1− M‖S2
‖

M⊥S2
⊥

γj = 1− M‖
M⊥

C
‖
j

C⊥j

√
S⊥
S‖

δj = 1− M⊥
M‖

(
bexm

‖
j

aexm
⊥
j

)2 (20)

and the following notation:

αj = aex

2

m⊥j
M⊥

µ = M‖
M⊥

S2
‖
S2
⊥

η‖,⊥ = η(ω) = 1 +
2

M‖,⊥S2
‖,⊥
(h̄ω − E0) f ∓‖,⊥ = (∓1 +

√
η‖,⊥(ω))2.

(21)

Then,

0±(ω, T ) ' M‖M2
⊥S‖

πρh̄4

√
f ∓‖

√
f ∓⊥ − (βµ/2

√
η⊥ )f ∓‖

(
√
η⊥ − (βµ/2√η⊥ )f ∓‖ )

[
f ∓⊥ − f ∓‖ µ(α − β/

√
η⊥ )

]3/2
×
{

2∑
j=1

(−1)jC⊥j
f ∓⊥ − f ∓‖ µ(γj − β/

√
η⊥ )[

1 + (αjM⊥S⊥/h̄)2(f ∓⊥ − f ∓‖ µ(δj − β/
√
η⊥ ))

]2
}2

×
{[

exp

(
M⊥S2

⊥
kBT

(
∓1 +

√
η⊥ − f ∓‖

βµ

2η⊥

))
− 1

]−1

+
1

2
± 1

2

}
(22)

provided that ∣∣∣∣∣βf
∓
‖
η⊥

∣∣∣∣∣ < 1 (23)

wherej = 2 corresponds to the electron mass andj = 1 to the hole mass. Equation (22)
represents the general expression for the rate of scattering caused by the emission or absorption
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of LA phonons in the uniaxial crystal. It allows one to estimate the broadening of the absorption
line due to the scattering of excitons on longitudinal acoustic vibrations at any temperatures
and for any frequencies (satisfying conditions (19) and (23)), taking account of the anisotropy
in the effective masses of the electron and hole, the velocity of sound, the deformation potential
constants and the exciton radii for two different directions. It is also important in discussing
the dynamical behaviour of excitons in the anisotropic vibration lattice field.

The full damping, which is the sum0 = 0+ + 0−, is a smooth function which weakly
increases with frequency at finite temperatures for the frequency range complying with
equations (19), (23), and at zero temperature for the frequenciesω > h̄−1E0. The difference
in the starting position for the frequencies follows from the fact that there is an energy
shift between the processes with phonon absorption and those with phonon emission. The
scattering at the temperatureT = 0 is only due to the processes with phonon emission,
while at temperaturesT 6= 0 it is caused by phonon absorption as well, and begins with the
frequency shifted to the long-wavelength region by a factor ofM‖,⊥S2

‖,⊥/2 compared to that
for the processes with phonon emission. Such behaviour of0 is similar to that for the isotropic
crystal. To verify this, it is enough to pass to the isotropic case in equation (22), putting
α = β = δj = γj = 0. Then one gets an equation that exactly coincides with the one obtained
earlier for cubic crystals—for instance, in [26].

Equation (22) simplifies for the frequencies ¯hω − E0 � M‖,⊥S2
‖,⊥/2. For this case one

gets

0±op(ω, T ) '
2M‖M⊥
πρh̄4S‖

(h̄ω − E0)

 2∑
j=1

(−1)jC‖j

[
1 +

h̄ω − E0

2M‖

(
m
‖
j

bex

h̄

)2
]−2


×

[

exp

(
−M⊥S

2
⊥

kBT

√
2(h̄ω − E0)

M⊥S2
⊥

)]−1

+
1

2
± 1

2

 . (24)

At low temperatures this expression depends weakly on the temperature, and the damping is
mainly due to the0+ processes and depends chiefly on the longitudinal components of the
crystal constantsM, S, Cj ,mj andbex.
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